Greenland Ice Sheet Is Shrinking Faster Than Forecast, Locking In Sea Level Rise: Study

A study published Aug. 29, 2022, demonstrates – for the first time – that Greenland’s ice sheet is now so out of balance with prevailing Arctic climate that it no longer can sustain its current size.
Meltwater flows from the Greenland ice sheet into the Baffin Bay near Pituffik, Greenland on July 17, 2022 as captured from the ground on a NASA mission along with University of Texas scientists to measure melting Ar... Meltwater flows from the Greenland ice sheet into the Baffin Bay near Pituffik, Greenland on July 17, 2022 as captured from the ground on a NASA mission along with University of Texas scientists to measure melting Arctic sea ice. - New observations from ICESAT-2 show remarkable Arctic Sea ice thinning in just three years. Over the past two decades, the Arctic has lost about one-third of its winter sea ice volume, largely due to a decline in sea ice that persists over several years, called multiyear ice, according to a new study. The study also found sea ice is likely thinner than previous estimates. (Photo by Kerem Yücel / AFP) / The erroneous mention[s] appearing in the metadata of this photo by Kerem Yücel has been modified in AFP systems in the following manner: [as captured from the ground] instead of [during an airborne mission]. Please immediately remove the erroneous mention from all your online services and delete it from your servers. If you have been authorized by AFP to distribute it to third parties, please ensure that the same actions are carried out by them. Failure to promptly comply with these instructions will entail liability on your part for any continued or post notification usage. Therefore we thank you very much for all your attention and prompt action. We are sorry for the inconvenience this notification may cause and remain at your disposal for any further information you may require. (Photo by KEREM YUCEL/AFP via Getty Images) MORE LESS

This article is part of TPM Cafe, TPM’s home for opinion and news analysis. It was first published at The Conversation.

I am standing at the edge of the Greenland ice sheet, mesmerized by a mind-blowing scene of natural destruction. A milewide section of glacier front has fractured and is collapsing into the ocean, calving an immense iceberg.

Seracs, giant columns of ice the height of three-story houses, are being tossed around like dice. And the previously submerged portion of this immense block of glacier ice just breached the ocean – a frothing maelstrom flinging ice cubes of several tons high into the air. The resulting tsunami inundates all in its path as it radiates from the glacier’s calving front.

Fortunately, I’m watching from a clifftop a couple of miles away. But even here, I can feel the seismic shocks through the ground.

A large iceberg calves off a glacier.
A fast-flowing outlet glacier calves a ‘megaberg’ into Greenland’s Uummannaq Fjord. (Alun Hubbard)

Despite the spectacle, I’m keenly aware that this spells yet more unwelcome news for the world’s low-lying coastlines.

As a field glaciologist, I’ve worked on ice sheets for more than 30 years. In that time, I have witnessed some gobsmacking changes. The past few years in particular have been unnerving for the sheer rate and magnitude of change underway. My revered textbooks taught me that ice sheets respond over millennial time scales, but that’s not what we’re seeing today.

A study published Aug. 29, 2022, demonstrates – for the first time – that Greenland’s ice sheet is now so out of balance with prevailing Arctic climate that it no longer can sustain its current size. It is irreversibly committed to retreat by at least 59,000 square kilometers (22,780 square miles), an area considerably larger than Denmark, Greenland’s protectorate state.

Even if all the greenhouse gas emissions driving global warming ceased today, we find that Greenland’s ice loss under current temperatures will raise global sea level by at least 10.8 inches (27.4 centimeters). That’s more than current models forecast, and it’s a highly conservative estimate. If every year were like 2012, when Greenland experienced a heat wave, that irreversible commitment to sea level rise would triple. That’s an ominous portent given that these are climate conditions we have already seen, not a hypothetical future scenario.

Our study takes a completely new approach – it is based on observations and glaciological theory rather than sophisticated numerical models. The current generation of coupled climate and ice sheet models used to forecast future sea level rise fail to capture the emerging processes that we see amplifying Greenland’s ice loss.

How Greenland got to this point

The Greenland ice sheet is a massive, frozen reservoir that resembles an inverted pudding bowl. The ice is in constant flux, flowing from the interior – where it is over 1.9 miles (3 kilometers) thick, cold and snowy – to its edges, where the ice melts or calves bergs.

In all, the ice sheet locks up enough fresh water to raise global sea level by 24 feet (7.4 meters).

David Attenborough takes us on a virtuoso tour of the Greenland ice sheet.

Greenland’s terrestrial ice has existed for about 2.6 million years and has expanded and contracted with two dozen or so “ice age” cycles lasting 70,000 or 100,000 years, punctuated by around 10,000-year warm interglacials. Each glacial is driven by shifts in Earth’s orbit that modulate how much solar radiation reaches the Earth’s surface. These variations are then reinforced by snow reflectivity, or albedo; atmospheric greenhouse gases; and ocean circulation that redistributes that heat around the planet.

We are currently enjoying an interglacial period – the Holocene. For the past 6,000 years Greenland, like the rest of the planet, has benefited from a mild and stable climate with an ice sheet in equilibrium – until recently. Since 1990, as the atmosphere and ocean have warmed under rapidly increasing greenhouse gas emissions, Greenland’s mass balance has gone into the red. Ice losses due to enhanced melt, rain, ice flow and calving now far exceed the net gain from snow accumulation.

Greenland’s ice mass loss measured by NASA’s Grace satellites.

What does the future hold?

The critical questions are, how fast is Greenland losing its ice, and what does it mean for future sea level rise?

Greenland’s ice loss has been contributing about 0.04 inches (1 millimeter) per year to global sea level rise over the past decade.

This net loss is split between surface melt and dynamic processes that accelerate outlet glacier flow and are greatly exacerbated by atmospheric and oceanic warming, respectively. Though complex in its manifestation, the concept is simple: Ice sheets don’t like warm weather or baths, and the heat is on.

A large area of meltwater pools on the snowy Greenland surface and forms a river and streams.
Meltwater lakes feed rivers that snake across the ice sheet – until they encounter a moulin. (Alun Hubbard)

What the future will bring is trickier to answer.

The models used by the Intergovernmental Panel on Climate Change predict a sea level rise contribution from Greenland of around 4 inches (10 centimeters) by 2100, with a worst-case scenario of 6 inches (15 centimeters).

But that prediction is at odds with what field scientists are witnessing from the ice sheet itself.

According to our findings, Greenland will lose at least 3.3% of its ice, over 100 trillion metric tons. This loss is already committed – ice that must melt and calve icebergs to reestablish Greenland’s balance with prevailing climate.

We’re observing many emerging processes that the models don’t account for that increase the ice sheet’s vulnerability. For example:

Weather stations sit atop wet snow in Greenland
In August 2021, rain fell at the Greenland ice sheet summit for the first time on record. Weather stations across Greenland captured rapid ice melt. European Space Agency

The issue with models

Part of the problem is that the models used for forecasting are mathematical abstractions that include only processes that are fully understood, quantifiable and deemed important.

Models reduce reality to a set of equations that are solved repeatedly on banks of very fast computers. Anyone into cutting-edge engineering – including me – knows the intrinsic value of models for experimentation and testing of ideas. But they are no substitute for reality and observation. It is apparent that current model forecasts of global sea level rise underestimate its actual threat over the 21st century. Developers are making constant improvements, but it’s tricky, and there’s a dawning realization that the complex models used for long-term sea level forecasting are not fit for purpose.

Several brightly colored research tents dot a landscape with streams and snow on the ice sheet.
Author Alun Hubbard’s science camp in the melt zone of the Greenland ice sheet. (Alun Hubbard)

There are also “unknown unknowns” – those processes and feedbacks that we don’t yet realize and that models can never anticipate. They can be understood only by direct observations and literally drilling into the ice.

That’s why, rather than using models, we base our study on proven glaciological theory constrained by two decades of actual measurements from weather stations, satellites and ice geophysics.

It’s not too late

It’s an understatement that the societal stakes are high, and the risk is tragically real going forward. The consequences of catastrophic coastal flooding as sea level rises are still unimaginable to the majority of the billion or so people who live in low-lying coastal zones of the planet.

A large sailing ship with an even larger iceberg behind it and a glacier in the distance.
A large tabular iceberg that calved off Store Glacier within Uummannaq Fjord. (Alun Hubbard)

Personally, I remain hopeful that we can get on track. I don’t believe we’ve passed any doom-laden tipping point that irreversibly floods the planet’s coastlines. Of what I understand of the ice sheet and the insight our new study brings, it’s not too late to act.

But fossil fuels and emissions must be curtailed now, because time is short and the water rises – faster than forecast.

Alun Hubbard is a professor of glaciology and the Arctic Five Chair at the University of Tromsø in Norway.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation
Dear Reader,

When we asked recently what makes TPM different from other outlets, readers cited factors like honesty, curiosity, transparency, and our vibrant community. They also pointed to our ability to report on important stories and trends long before they are picked up by mainstream outlets; our ability to contextualize information within the arc of history; and our focus on the real-world consequences of the news.

Our unique approach to reporting and presenting the news, however, wouldn’t be possible without our readers’ support. That’s not just marketing speak, it’s true: our work would literally not be possible without readers deciding to become members. Not only does member support account for more than 80% of TPM’s revenue, our members have helped us build an engaged and informed community. Many of our best stories were born from reader tips and valuable member feedback.

We do what other news outlets can’t or won’t do because our members’ support gives us real independence.

If you enjoy reading TPM and value what we do, become a member today.

Latest Cafe
Comments
Masthead Masthead
Founder & Editor-in-Chief:
Executive Editor:
Managing Editor:
Associate Editor:
Investigations Desk:
Reporters:
Newswriter:
Editor at Large:
General Counsel:
Publisher:
Head of Product:
Director of Technology:
Associate Publisher:
Front End Developer:
Senior Designer: